Рабочая программа по математике 11 класс

  1. Материалы для учителя
  2. Музыка

Автор материала: Кудайбергенова Миргуль Бакытовна

Содержимое документа:


РАССМОТРЕНО СОГЛАСОВАНО УТВЕРЖДАЮ

На заседании МО Зам. директора по УВР Директор

математического цикла Огизова Н.В. Самашева А.Т.

Протокол №___от________ «___»__________2017г Приказ от _______ №

Руководитель МО

Кудайбергенова М.Б.

РАБОЧАЯ ПРОГРАММА

Учебного курса «Математика. 11 класс»





Класс: 11

Уровень образования: основное общее образование

Срок реализации программы- 2017/2018гг.

Количество часов по учебному плану:5

Всего- 170 ч/год; 5ч/ неделю

Планирование составлено на основе:

Примерной программы основного общего образования по математике, с учетом требований федерального компонента государственного стандарта общего образования и на основе авторских программ А.Г.Мордковича и Л.С. Атанасяна.

Учебники

  1. А.Г.Мордкович, П.В.Семёнов. Алгебра и начала математического анализа. 10-11 классы (базовый уровень). В 2 ч. Ч.1. Учебник (базовый уровень)

  2. А.Г.Мордкович и др. Алгебра и начала математического анализа. 10-11 классы. В 2ч. Ч. 2. Задачник (базовый уровень)

  3. Геометрия, 10—11: Учеб. Для общеобразоват. учреждений / Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2013

Рабочую программу составила учитель математики

Кудайбергенова Миргуль Бакытовна










2017г.

Планируемые результаты освоения учебного курса.

знать/понимать:

– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

– вероятностный характер различных процессов окружающего мира;

Алгебра

уметь:

– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь:

– определять значение функции по значению аргумента при различных способах задания функции;

– строить графики изученных функций;

– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь:

– вычислять производные и первообразные элементарных функций, используя справочные материалы;

– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

– вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь:

– решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

– составлять уравнения и неравенства по условию задачи;

– использовать для приближенного решения уравнений и неравенств графический метод;

– изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь:

– решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

– вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;


использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для анализа реальных числовых данных, представленных в виде диаграмм, графиков;

– анализа информации статистического характера;

владеть компетенциями:

– учебно-познавательной;

– ценностно-ориентационной;

– рефлексивной;

– коммуникативной;

– информационной;

– социально-трудовой.

ГЕОМЕТРИЯ

Уметь:

распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

анализировать в простейших случаях взаимное расположение объектов в пространстве;

изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

использовать при решении стереометрических задач планиметрические факты и методы;

проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Содержание курса

Степени и корни. Степенные функции. (17 ч)

Основная цель:

– формирование понятий «степень с рациональным показателем», «корень n-степени из действительного числа и степенной функции»;

– овладение умением применения свойств корня n-степени; преобразования выражений, содержащих радикалы;

– обобщение и систематизация знаний о степенной функции;

– формирование умения применять многообразие свойств и графиков степенной функции в зависимости от значений оснований и показателей степени

Содержание:

Понятие корня n-степени из действительного числа. функции у=, их свойства и графики. Свойства корня n-степени. Преобразования выражений, содержащих радикалы. Обобщение понятия о показателе степени. Степенные функции, их свойства и графики.

Векторы в пространстве.( 12ч.)

Основная цель:

- формирование представлений о векторах в пространстве

- овладение умением оперировать с векторами в пространстве

- развитие навыков операций над векторами

- формирования представлений о  классической вероятностной схеме, о перестановке, сочетании и размещении


Содержание:

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Кампланарные векторы.

Показательная и логарифмическая функции. (32ч.)

Основная цель:

– формирование представлений о показательной и логарифмической функциях, их графиках и свойствах;

– овладение умением понимать и читать свойства и графики логарифмической функции, решать логарифмические уравнения и неравенства; понимать и читать свойства и графики показательной функции, решать показательные уравнения и неравенства;

– создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах

Содержание:

Показательная функция, ее свойства и график. Показатель-ные уравнения. Показательные неравенства.

Понятие логарифма. Функция у = log х, ее свойства и график. Свойства логарифмов. Логарифмические уравнения. Логарифмические неравенства. Переход к новому основанию логарифма. Дифференцирование показательной и логарифмиче-ской функций.

Метод координат в пространстве. (10ч.)

Основная цель:

- умение проводить операции над векторами

- формирование навыков вычисления длины и координат вектора

- развитие навыков нахождения угла между векторами

Содержание:

Координаты точки и координаты вектора. Скалярное произведение векторов. Движения.

Первообразная и интеграл (10 ч.)

Основная цель:

– формирование представлений о понятии первообразной, неопределенного интеграла, определенного интеграла;

– овладение умением применения первообразной функции при решении задачи вычисления площадей криволинейных трапеций и других плоских фигур

Содержание:

Первообразная. Правила отыскания первообразных. Таблица основных неопределенных интегралов.

Предпросмотр онлайн:

Скачать 254.00 Kb

Посмотрите также:

— Рабочая программа по математике (алгебре) 10-11 класс
— Программа прикладного курса для 10 – 11 классов «Уравнения, неравенства и их системы»
— Рабочая программа элективного курса в 11 классе
— Рабочая программа по математике для 10, 11 классов «Стандарты нового поколения»
— Рабочая программа учебного курса «Математические основы математики» для 11 класса